
UNIVERSITY OF EXTREMADURA

SCHOOL OF TECHNOLOGY

MASTER IN COMPUTER SCIENCE

MASTER DEGREE PROJECT

LearnBot 2.0:

A tool for programming teaching

and
emotional management through robotics

UNIVERSITY OF EXTREMADURA

SCHOOL OF TECHNOLOGY

MASTER IN COMPUTER SCIENCE

MASTER DEGREE PROJECT

LearnBot 2.0:

A tool for programming teaching

and
emotion management through robotics

Author: Iván Barbecho Delgado

Tutor: Pilar Bachiller Burgos

Abstract

The use of robots as tools to facilitate technological education is rapidly gaining

interest. The educational robotics allows students to experience situations that

contribute to acquire cognitive strategies for solving, planning and execution real

problems. The robot LearnBot was designed in the area of educational robotics for

promoting the development of computational thinking in different educational stages.

LearnBot is a low cost robotic platform which has to be programmed using the

Python language. This work aims at developing an improved version of LearnBot

to extend this robotic tool to other usages related to emotional management. To this

end, using the new robotic platform, called EBO, students can simulate emotional

behaviors. In addition, we have developed a specific programming tool for EBO,

called LearnBlock, designed for easy usage of the robot. LearnBlock provides a

visual language through which children can program robot behaviors in an intuitive

way by specifying what the robot has to do whenever a given situation occurs. The

language can be easily extended by creating new blocks associated to Python functions.

Moreover, LearnBlock programs can run in either the physical robot and a simulated

robot. Both, EBO and LearnBlock, are open developments. In this document, the

different aspects of the design, implementation and usage of both educational tools

are described in detail. In addition, a review of the existing educational robots closely

related to our approach is presented, comparing different features these educational

tools.

Resumen

El uso de robots como herramienta para facilitar la educación tecnológica

está ganando rápidamente interés. La robótica educativa permite a los estudiantes

experimentar situaciones que contribuyen a adquirir estrategias cognitivas para

resolver, planificar y ejecutar problemas reales. El robot LearnBot fue diseñado

en el área de la robótica educativa para promover el desarrollo del pensamiento

computacional en diferentes etapas educativas. LearnBot es una plataforma robótica de

bajo coste que se programa utilizando el lenguaje de programación Python. Este trabajo

tiene como objetivo desarrollar una versión mejorada de LearnBot para extender esta

herramienta robótica a otros usos relacionados con la gestión emocional. Con este

fin, utilizando la nueva plataforma robótica, llamada EBO, los estudiantes pueden

simular comportamientos emocionales. Además, se ha desarrollado una herramienta

de programación especı́fica para EBO, llamada LearnBlock, diseñada para facilitar el

uso del robot. LearnBlock proporciona un lenguaje visual a través del cual los niños

pueden programar comportamientos en el robot de una manera intuitiva especificando

qué tiene que hacer el robot cada vez que se produce una situación determinada.

El lenguaje se puede extender fácilmente mediante la creación de nuevos bloques

asociados a funciones de Python. Además, los programas pueden ejecutarse en el robot

fı́sico y en un robot simulado. Ambos, EBO y LearnBlock, son desarrollos abiertos.

En este documento, se describen detalladamente los diferentes aspectos del diseño, la

implementación y el uso de ambas herramientas educativas. Además, se presenta una

revisión de los robots educativos existentes estrechamente relacionados con nuestro

proyecto, comparando diferentes aspectos de estas herramientas educativas.

Contents

1. Introduction 1

2. Project objectives 3

3. State of Art 5

4. Methodology 19

4.1. The Robot . 19

4.1.1. What should be the aspect of the robot to receive greater

acceptance from the children? 20

4.1.2. What sensory and motor abilities should the robot have? . . . 21

4.1.3. Should it be a construction kit? 22

4.1.4. Should the robot be designed from scratch or reusing parts of

an existing project? . 22

4.2. Integrated Development Environment 23

4.2.1. What types of programming languages should the tool allow for? 24

4.2.2. What programming models should the tool provide? 25

4.2.3. Can the development start from an existing project? 25

5. Implementation and development 27

5.1. The robot . 27

5.1.1. Hardware . 28

5.1.2. Software . 30

III

5.1.3. Design . 33

5.2. Communication between EBO and the PC 35

5.3. The Programming Tool . 36

5.3.1. Industrial programming language (Python) 38

5.3.2. Domain specific language (EBOCode) 38

5.3.3. Visual programming language 41

5.4. The simulator . 46

5.5. Execution of the user code . 48

6. Results 51

6.1. Short workshops . 51

6.2. Programming introduction workshops 56

6.3. Comparison with other robotic educational projects 59

7. Conclusions and future works 67

Annexes 71

A. Installation 71

Bibliography 73

List of Tables

3.1. Table with a list of hardware components of WeDo 2.0, EV3, Mbot,

Zowi and Colby . 11

3.2. Table with a list of hardware components of Joy robot, Thymio, Codey

rocky, Cozmo and Vector . 12

3.3. General features of the analyzed projects 13

3.4. General functionalities of the analyzed projects 14

3.5. General features of the analyzed programming tools 18

4.1. Stages table of Cognitive Growth from Piaget’s Perspective[1] 20

6.1. Table with a list of hardware components of WeDo 2.0, EV3, Mbot,

Zowi, Colby and EBO . 61

6.2. Table with a list of hardware components of Joy robot, Thymio, Codey

rocky, Cozmo, Vector and EBO . 62

6.3. General features of the analyzed projects and EBO 64

6.4. General functionalities of the analyzed projects and EBO 65

6.5. General features of the analyzed programming tools and LearnBlock . 66

V

List of Figures

3.1. Lego WeDo 2.0 robot and code example 5

3.2. 4 assembly examples using the Lego EV3 kit 6

3.3. Mbot robot and programming example 6

3.4. The robot Zowi . 7

3.5. The robot Colby . 7

3.6. Robot codey rocky . 8

3.7. The robot Joy Robot . 8

3.8. The robot Thymio . 9

3.9. The robot Cozmo . 9

3.10. The robot Vector . 10

3.11. Scratch graphical interface . 15

3.12. Extension of Blockly to generate code for Arduino 16

4.1. Robot designs used in a survey. 21

4.2. Robot of LearnBot’s Project. 23

5.1. The EBO robot. 27

5.2. Shield that connects the components to the Raspberry 29

5.3. Connection diagram of the EBO hardware. 30

5.4. Base of the robot . 33

5.5. Housing of the camera . 33

5.6. Raspberry support . 34

5.7. Frontal shell . 34

VII

5.8. Rear shell . 35

5.9. Integrated text editor for programming in Python. Example of a Python

code that makes the robot to follow a red line. 39

5.10. Implementation of the “follow red line” behavior using EBOCode with

sequential programming. 40

5.11. Implementation of the “follow red line” behavior using EBOCode with

event-driven programming. 41

5.12. Shapes of the different available blocks. 42

5.13. Two different types of blocks for the same function. 44

5.14. Interface of the programming tool for visual programming. Blocks

are shown on the left, organized according to the type property of the

configuration file. 44

5.15. Implementation of the “follow red line” behavior using sequential

visual programming. 45

5.16. Implementation of the “follow red line” behavior using event-driven

visual programming. 46

5.17. Simulated environment where the robot is in a limited surface with lines. 47

5.18. Simulated environment of a labyrinth. 48

5.19. Diagram of connections between the tool, the physical robot and the

simulated robot. 49

6.1. Ages of the children who participated in the short workshops. 52

6.2. Gender of the participants of the short workshops. 52

6.3. Gender distribution by age of the children who participated in the short

workshops. 53

6.4. Evaluation of the appearance of the robot by the participants of the

short workshops. 54

6.5. Evaluation of the representation of emotions in our robot by the

participants of the short workshops. 54

6.6. Evaluation of general features of the programming tool by the

participants of the short workshops. 55

6.7. Opinion about the complexity of the tool for programming (short

workshops). 56

6.8. Evaluation about the interest of the whole project by the participants

of the short workshops. 56

6.9. Ages of the children who participated in the programming introduction

workshops. 57

6.10. Gender of the participants of the programming introduction workshops. 57

6.11. Gender distribution by age of the children who participated in the

programming introduction workshops. 58

6.12. Evaluation of the appearance of the robot by the participants of the

programming introduction workshops. 58

6.13. Evaluation of the representation of emotions in our robot by the

participants of programming introduction workshops. 59

6.14. Evaluation of general features of the programming tool by the

participants of the programming introduction workshops. 59

6.15. Opinion about the complexity of the tool for programming

(programming introduction workshops). 60

6.16. Evaluation about the interest of the whole project by the participants

of the programming introduction workshops. 60

Chapter 1

Introduction

Nowadays more and more schools are using different technological resources to

prepare their students for the new digital world, where many jobs are related to

computer science. For this reason, teachers have started introducing concepts of

programming in early ages, using tools like Scratch [2], to teach programming to

theirs students in a visual and simple way.

These new resources are not exclusively dedicated to learn concepts of

programming. In addition, they can be used to complement different teaching units

or projects related to logic, mathematics or language, facilitating the teacher work.

The main aim of this project is to create one of these technology resources,

developing open-source and open-hardware tools, as flexible as possible, composed of

a robot (EBO) capable of recognizing and showing emotions, a program development

tool (LearnBlock) devoted to programming different robot behaviors, including

emotional behaviors, using an easy-to-extend programming language and, finally, a

robot simulator to test the programs when the physical robot is not available.

Next chapter exposes the different objectives of our work. In order to justify the

need for a new educational robot, chapter 3 presents an analysis of existing robotic

platforms and programming tools used in education. In chapter 4, the different

decisions that have been taken for the design and implementation of both, the robot

and the programming tool, are described. Chapter 5 details the different stages of

1

the development of the hardware and software tools composing our project as well as

the final result. Results obtained after using the developed tools in different workshops

with groups of students of different ages are exposed and analyzed in chapter 6. Finally,

chapter 7 summarizes the main conclusions and potential extensions of our work.

2

Chapter 2

Project objectives

The main objective of this project is to develop an educational robot capable of

exhibiting not only motor behaviors, but also emotional ones, acting as a tool to learn

computer programming concepts and to work different aspects related to emotional

management.

This tool will be composed of:

A robot totally designed and built by us.

A development tool to create programs for the robot in an easy way.

A simulator of the robot and its environment, on which the same programs

developed for the physical robot can be executed.

To achieve the maximum success of the project, the following specific goals are

proposed:

Search and analysis of existing educational robots and programming tools.

Study of requisites and functionality.

Design and implementation of the robot.

Design and implementation of the programming tool.

Selection of a simulator.

3

Interconnection between the robot (simulated and physical) and the

programming tool.

Start-up in the classrooms.

4

Chapter 3

State of Art

This chapter presents a review of different robots and programming tools used in

education. We mainly focus on those platforms that present features of interest for our

project.

One of the most widely used tools is WeDo 2.0 [3] developed by Lego. This project

is composed of a Lego kit for building different robots, with a tilt sensor, a proximity

sensor and a motor. In addition, this tool has a coding IDE (Integrated Development

Environment) to develop different programs. Figure 3.1 shows a robot built using the

kit along with an example of code to control the robot.

Figure 3.1: Lego WeDo 2.0 robot and code example

The next analyzed tool is also developed by Lego and is called EV3 [4]. Like WeDo

2.0, this project is composed by a Lego building kit, with more sensors and actuators

than WeDo, and a coding IDE. This project is designed to build more complex robots.

In figure 3.2 some assembly examples using this Lego kit are shown.

5

Figure 3.2: 4 assembly examples using the Lego EV3 kit

Another project, similar to the previous ones, is Mbot [5], developed by

Makeblock, which provides a kit to build a robot and an IDE for programming. It

is worth mentioning that this project is open-source and open-hardware. Figure 3.3

shows the Mbot Robot and a programming example.

Figure 3.3: Mbot robot and programming example

Besides the building kits, other interesting projects exist. One of them is the robot

Zowi (figure 3.4) [6], a project developed by bq for Clan TV, a cartoon channel of

Radio Televisión Española. Along with the robot, this project includes a coding IDE

for programming its movements. The robot can not be modified to add more sensors

or actuators.

6

CHAPTER 3. STATE OF ART

Figure 3.4: The robot Zowi

Another project related to educational robotics is Colby (figure 3.5) [7], a

mouse-shaped robot developed by Learning Resources. This project has a robot that is

programmed by entering a sequence of movement by pressing different buttons. These

buttons are on the top of the robot.

Figure 3.5: The robot Colby

Another project, developed by Makeblock, is Codey Rocky (figure 3.6) [8]. This

educational tool includes a robot with the appearance of a panda that is composed of 2

parts which can work individually. One part has a display to show images, a speaker

and three buttons among other sensors and actuators. The second part is a platform,

where the display is connected, that allows for moving the robot in a horizontal plane.

This robot can be programmed using a programming IDE or using a Python API.

7

Figure 3.6: The Robot Codey Rocky

The next project we have analyzed is Joy robot (figure 3.7) [9], develop by Igor

Fonseca Albuquerque. It has a robot and a programming tool. Joy Robot is an

open-source and open-hardware project and anyone can improve it or customize it.

Figure 3.7: The robot Joy Robot

This analysis also includes the project Thymio (figure 3.8) [10], another project

composed of a robot and a tool for programming. This robot, like Joy robot, is an

open-source and open-hardware project. Thymio has numerous sensors and lights.

8

CHAPTER 3. STATE OF ART

Figure 3.8: The robot Thymio

Anki is a robotic company that has 2 robots like the analyzed projects. The

first one, is Cozmo. This robot is sold like a toy. It has a lot of features, but the

most prominent one is that it has a ”life”, with a personality. Thus, it is endowed

with an artificial intelligence software that allows the user for interacting with the

robot. Cozmo can play some games with the user, but in addition, Cozmo can be

programmed by the user through its development application, building programs with

a visual programming language. This application is a version of the Scracth tool.

Figure 3.9 is shows the Cozmo robot.

Figure 3.9: The robot Cozmo

The second one is Vector (figure 3.10), an evolution of Cozmo. This new robot

extends the features of Cozmo, adding additional components, such as a microphone

9

matrix, a touch sensor and a laser scanner sensor. The main limitation of Vector is that

it cannot be programmed with a specific tool designed for children.

Figure 3.10: The robot Vector

To provide a complete comparison of the different analyzed projects, the following

tables summarize the main features and functionality of each project according to

certain issues of interest in our work. The first two tables (3.1 and 3.2) present the

list of hardware components of each robot.

Table 3.3 compares more general features related to the use possibilities of each

project from an educational point of view. Specifically the following features are

considered:

Building kit: as was mentioned above, some projects include robotic building

kits that extend the use possibilities in education. Nevertheless, the functionality

of these robots is more limited.

Visual programming tool: visual programming languages have emerged to

make programming more accessible to beginners. Among other features, visual

languages reduce potential syntactic errors, which makes them suitable as

introductory programming languages.

Integration of general elements of programming languages: such as variables,

control structures or functions.

Simulator support: robot simulation is a very interesting feature of any

10

CHAPTER 3. STATE OF ART

Table 3.1: Table with a list of hardware components of WeDo 2.0, EV3, Mbot, Zowi
and Colby

WeDo 2.0 EV3 Mbot Zowi Colby

Processor ?
ARM9

300MHz
ATmega

2560
ATmega

328
Cores ? 1
Prize 173e 438,99e 121.75e 79,90e 59,99$
Microphone V V
Distance
sensor Ultrasound Ultrasound Ultrasound

Touch
sensor
Cliff
sensor

*Can use
Ultrasound

IMU V V
Screen
resolution 178×128 Matrix Led

LED Matrix
(5 x 6 px)

Screen
Colors Gray

Screen Size
Camera
resolution
Battery
duration ? 3h 1-2h 8 h ?

Lights 1 1 V
Motors Normal Normal Normal Normal Normal

Speaker
*Speaker
or Buzzer

Buzzer V V
*Speaker
or Buzzer

IR Reciver/
Trasmiting V

Line sensor V
Parts 280 541 +-50 +-30 ?

Connections
Bluetooth/

Wifi

USB/
Wifi /

Bluetooth

Bluetooth/
Wifi Bluetooth

Color sensor V V
Termometer

11

Table 3.2: Table with a list of hardware components of Joy robot, Thymio, Codey
rocky, Cozmo and Vector

Joy robot Thymio Codey
rocky Cozmo Vector

Processor ATmega2560 ? ESP32
ARM

Cortex 4
100 MHz

Qualcomm
Snapdragon

1.2GHz
Cores ? 1 4
Prize ? 109.90e 99$ 180$ 250$
Microphone 1 V 4
Distance
sensor 9 InfraRed 1

1 laser
(Max 1m)

Touch
sensor *Smartphone

5 capacitive
buttons

On the top
of the robot,
(Capacitive)

Cliff
sensor

* the same
as the

distance.
V V

IMU V V V V
Screen
resolution

LED Matrix
(16x16 px)

LED
Matrix 128x64 184x96

Screen
Colors Red Blue Blue Full color

Screen Size *Smartphone 1.8” 1.8”
Camera
resolution *Smartphone 320x240 720p

Battery
duration ? 3-5 h 2h 45-60min 45-60min

Lights 39LEDS V 4 5
Motors Normal Normal Normal Normal Noiseless
Speaker V V V V
Buzzer
IR Reciver/
Trasmiting 1 V

Line sensor
Parts +-130 ? ? 700 370

Connections Bluetooth Wifi
Wi-Fi/

Bluetooth/
USB

Wifi Wifi

Color sensor V
Termometer 1

12

CHAPTER 3. STATE OF ART

Table 3.3: General features of the analyzed projects

WeDo 2.0 EV3 Mbot Zowi Colby
Building kit X X X
Visual programming tool X X X X
Integration of general
elements of programming
languages

X X X X

Simulator support
Open-source project X
Open-hardware project X

Joy robot Thymio Codey
rocky Cozmo Vector

Building kit
Visual programming tool X X X X
Integration of general
elements of programming
languages

X X X X

Simulator support
Open-source project X X X
Open-hardware project X X

educational project related to programming and robotics, since this feature adds

the possibility of testing the programs when the physical robot is not available.

Open-source project: possibility to use or modify/adapt the code in a new

project.

Open-hardware project: possibility to make your own replication of the robotic

platform.

Regarding the functionalities of the reviewed educational robots, table 3.4

summarizes the most significant ones. We have considered sensory and motor abilities

that can be used to program robot behaviours.

Since the objective of this project is not only to create an educational robot, but also

to develop a programming tool, a review of the main programming tools in education

is also included. We have focused on Scratch and Blockly. Both tools can be modified

to create a programming environment for a specific platform. The most complete

13

Table 3.4: General functionalities of the analyzed projects

WeDo 2.0 EV3 Mbot Zowi Colby
Follow black line X X X
Follow color line
Emotional expressions X X
Emotion recognition
Tag recognition
Obstacle detection X X X X
Base motion X X X X X
Face detection
Touch detection X
Slant detection X X
Sound detection X
Sound making X X X X

Joy robot Thymio Codey
rocky Cozmo Vector

Follow black line X X X
Follow color line
Emotional expressions X X X X
Emotion recognition X
Tag recognition X X
Obstacle detection X X X
Base motion X X X X X
Face detection X X
Touch detection X X
Slant detection X X X X
Sound detection X X X
Sound making X X X X

14

CHAPTER 3. STATE OF ART

Figure 3.11: Scratch graphical interface

programming tools of the previously described projects are based on one of these two

frameworks.

Scratch[11] has been developed by the Team Lifelong Kindergarten. Programs in

Scratch are created in a visual way, through block connections. This tool offers two

different programming models: sequential and event-driven1. Scratch is open-source

and anyone can collaborate in the project. Figure 3.11 shows the graphical interface of

this tool and a code example.

Blockly [12] has been developed by the Google Team with certain similarities to

Scratch. Thus, it provides a graphical interface where programming is solved through

interconnected blocks. The basic version of Blockly includes a very limited number of

blocks, which are translated to JavaScript, PHP, Dart and Python. Nevertheless, since

it is an open-source project, it can be adapted to an specific use. Many tools can be

found created as extensions of Blockly. In fact, most of the programming tools of the

aforementioned robots are extensions of Blockly. Blockly can be extended easily, using

an online tool to create new blocks, adding libraries of functions and the translation to

different programming languages for each block. Figure 3.12 shows an example of

1Event-driven programming is a type of programming where a program is composed of independent
portions of code. Each portion is run when a given condition is activated.

15

Blockly that generates Arduino Code.

Figure 3.12: Extension of Blockly to generate code for Arduino

Table 3.5 compares the main features of both programming environments. In

particular, the following characteristics are considered:

Create functions with blocks: the user can create functions that are implemented

through the use of other existing blocks.

Functions created with blocks can return a value: defined functions can return

values.

Functions created with blocks can be exported to be used in other programs:

defined functions can be exported to create a set of library-like functions. This

library could be imported into new programs to use them in new projects.

Create blocks from code: the tool allows defining blocks that are implemented

using textual programming.

Facilitates the creation of blocks from code: new blocks can be easily

implemented using textual programming, without having to edit a lot of code.

16

CHAPTER 3. STATE OF ART

This feature will be considered only when this process can be done from the tool

itself.

Multilingual options: The tool can be used in different languages, like Spanish,

English, etc.

Can be used from a web browser: he tool can be used from a web browser.

Can be downloaded into the PC: The tool can be downloaded and installed in a

PC to be used in local mode.

Has a community of shared code: there is a community in which users publish

their programs.

Consistency of variables: when the user makes use of variables and eliminates

some of them, these are deleted from the program code maintaining the

consistency among all the variables.

Can be adapted to other robots: The tool can be used to program other robots.

High-level functions already implemented can be used in adapted projects:

high-level functions, such as ”there is an obstacle” or ”there is a person”, can be

used in projects adapted to other robots, without modifying the implementation

of the function.

Includes a hardware abstraction layer: the tool provides a hardware abstraction

layer that facilitates the task of adapting the tool to other robots.

The tool directly translates from block code to other programming languages:

the tool directly translates a program written in visual programming to other

programming languages, such as Python.

Analyzing both development tools using the features described above, it can be

observed that Blockly includes all the features available in Scratch and provides

additional ones. Thus, in Scratch, new function blocks can be created from JavaScript,

17

Table 3.5: General features of the analyzed programming tools

Scratch Blockly
Create functions with blocks X X
Functions created with blocks can
return a value X

Functions created with blocks can be
exported to used in other programs
Create blocks from code X X
Facilitates the creation of blocks
from code
Multilingual options X X
Can be used from web navigator X X
Can be downloaded in the PC X X
Has a community of shared code X
Consistency of variables X X
Can adapted to other robots X X
High-level functions already implemented
can be used in adapted projects
Includes a hardware abstraction layer
The tool directly translates from block
code to other programming languages X

but this process is not an easy task, since it does nor provide any tool to create this

code. In addition, when the user define a variable and delete it at some point, the

variable is not deleted from the code, but is created again when the program is executed

without any notification to the user. On the contrary, Blockly controls the delection of

variables in a more proper way. In addition, Blockly can return values in functions

defined with blocks and new blocks can be easily created from JavaScript using a

specific tool, although this tool is not in integrated in the programming environment,

but in another web service. Finally, Blockly can automatically translate the visual code

to other programming languages, while Scratch does not provide a direct translation

(although some external tools exist to translate a Scratch project to other programming

languages).

From this analysis of the different robots and programming tools in education,

different decisions have been made during the development of this project. These

decisions are described in the next chapter of this document.

18

Chapter 4

Methodology

This chapter describes the main questions that were considered at the beginning

of this project to make the most important decisions about the design of the robotic

platform and the programming tool.

The first questions we should answer is:

At what ages will the project be destined?

According to Piaget’s theory of cognitive development the child has four stages

(table 4.1) . Taking into account the cognitive features of each stage, it can be said

that the project is suitable for children between 10 and 12 years old, since the stages

“concrete operations” and “formal operations” appropriately fit the features of this

project.

The selected period involves that, in the Spanish educational system, this project

will be deployed in the courses 4o, 5o and 6o of primary education.

Once the first question has been answered, design decisions concerning the robot

and the programming tool must be independently made, considering the different

particularities of both components.

4.1. The Robot

Regarding the robot design, the following questions were initially considered:

19

4.1. THE ROBOT

Table 4.1: Stages table of Cognitive Growth from Piaget’s Perspective[1]

Stage Age Features

Senrorimotor
The active child

Birth to nearly
2 years

Children learn proactive behavior,
thinking oriented to means and ends,
the permanence of objects.

Preoperational
The intuitive child

About 2 to
7 years

The child can use symbols and words
to think. Intuitive solution of problems,
but thought is limited by rigidity,
centralization and self-centeredness.

Concrete Operations
The practical child

About 7 to
11 years

The child learns the logical operations
of seriation, classification on and
conservation. The thought is linked to
the phenomena and objects
of the real world.

Formal Operations
The thoughtful child

About 11 to
12 years
and through
adulthood

The child learns abstract systems of
thought that allow him/her to use
propositional logic, scientific reasoning
and proportional reasoning.

What should be the aspect of the robot to receive greater acceptance from the

children?

What sensory-motor abilities should the robot have?

Should it be a construction kit?

Should the robot be designed from scratch or reusing parts of an existing project?

Each answer to these questions constitutes an important design decision. Next

sections describe in detail the most important points of our proposal according to the

previous questions.

4.1.1. What should be the aspect of the robot to receive greater

acceptance from the children?

To solve the first design issue, a survey was made to a group of children. Initially,

children were asked to draw a robot with the aspect they thought it should have. The

majority of the children drew complex robots, with arms and legs, that were difficult

20

CHAPTER 4. METHODOLOGY

to design and build. For this reason, several designs (figures 4.1a, 4.1b, 4.1c and 4.1d)

were made and children were ask to select the favorite one.

(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure 4.1: Robot designs used in a survey.

The design that received more votes was 4.1b. Thus, this design was initially taken

to build a prototype of our robot.

After detecting some design flaws, certain aspects of the robot were redesigned,

but respecting the rounded shape of the robot, as far as possible. The final design is

shown in the section 5.1.3

4.1.2. What sensory and motor abilities should the robot have?

Considering the main abilities of the analyzed educational robot, the following

abilities were established as essential:

Move through its surroundings.

Perceive visual stimuli.

Detect obstacles.

21

4.1. THE ROBOT

Extending these general abilities to more specific ones, the following skills were

included:

Turn to the left and to the right.

Move forward.

Move to the left and to the right.

Detect different colors.

Detect people/faces.

Recognize emotions.

Detect frontal, right and left obstacles.

Express emotions.

Recognize marks (e.g. AprilTags).

With this set of skills, there is a wide range of combinations to define different

robot behaviors that can be of interest for different teaching units.

4.1.3. Should it be a construction kit?

Taking into account that the robot that is intended to design requires complex

hardware, it is considered that the design of a mounting kit for the construction of

the robot is not a priority. However, since our project is open-hardware, anyone has

access to the designs and the construction process, being able to replicate the robot or

even modify its appearance or incorporate new sensors or actuators.

4.1.4. Should the robot be designed from scratch or reusing parts

of an existing project?

In 2005, RoboLab, the Robotic Laboratory of the University of Extremadura,

developed an educational robot [13], called LearnBot, which meets some of the

22

CHAPTER 4. METHODOLOGY

expectations of the present project. LearnBot (figure 4.2) uses the hardware platform

Odroid-C1 and is composed of the following sensors and actuators.

4 Ultrasonic sensors.

1 Fixed camera.

1 Differential base.

Figure 4.2: Robot of LearnBot’s Project.

LearnBot is programmed in Python using the open-source framework RoboComp

[14], which has been designed to be used in the field of robotics and is heavily based

on the component-oriented programming (COP) paradigm. It offers the possibility

to create components in an easy and simple way. The communication between these

components is carried out with public interfaces using the communication middleware

ICE [15].

4.2. Integrated Development Environment

Design decisions regarding a programming tool for our robot have been based on

the following questions

What types of programming languages should the tool allow for?

23

4.2. INTEGRATED DEVELOPMENT ENVIRONMENT

What programming models should the tool provide?

Can the development start from an existing project?

As in the previous section, each answer supposes an important decision for the

development of the coding tool. Next subsections analyze these questions in detail.

4.2.1. What types of programming languages should the tool allow

for?

The purpose of this question is to determine whether the programming language

should be textual, visual or both. Each type of programming language has certain

benefits from an educational point of view. For textual programming languages, the

following points can be highlighted:

Similar to those used in industry.

Wide variety of languages.

For visual programming languages:

Easy to learn and use.

Suitable for beginners.

Reduce or even eliminate syntactic errors.

Soft learning curve.

Considering that our project is destined to children, the IDE should have a visual

programming language, since the properties of this type of programming language

make it ideal for non-programmers. Nevertheless, in the long term, we believe

that the tool has to offer other options that provide the possibility of extending and

improving the programming skills of the children. For this reason, we decided that the

programming tool should include 3 programming languages:

24

CHAPTER 4. METHODOLOGY

A visual programming language.

A textual representation of the visual programming language.

An industry programming language.

Thus, providing different types of languages facilitates a complete learning of

an industrial programming language, starting with visual programming, then with a

middle language, and, finally, using an industrial language.

4.2.2. What programming models should the tool provide?

Regarding programming models, the two basic types available in other educational

tools are considered: sequential programming and event-driven programming.

Sequential programming is the basic model of programming. Many programming

languages use this model, so providing this feature in the selected programming

languages is essential. On the other side, in the event-driven programming paradigm,

a program is designed to detect events as they occur and react to those events by

executing the associated portions of code, which can be seen as reactions to different

potential situations. This conception is very interesting in robotics for programming

robot behaviours. After analyzing the advantages of these two programming models,

we decided to include both of them. Thus, the user can select which model is more

suitable to solve an specific problem.

4.2.3. Can the development start from an existing project?

Since the robot design is initially based on the LearnBot robot, the design of

the programming tool also starts from the same project. As previously mentioned,

LearnBot is programmed in Python, using an intermediary class to communicate with

the physical robot. Thus, this intermediary class acts as a Hardware Abstraction Layer

(HAL).

Since the LearnBot project does not include an IDE, the programming tool has

been entirely developed from the beginning. Nevertheless, we have taken advantage of

25

4.2. INTEGRATED DEVELOPMENT ENVIRONMENT

the idea of using a HAL class due to the benefits of separating access to hardware from

high-level functionality. In addition, Python has been selected as the industrial textual

language of our tool (and also as the language for the tool development) because of its

simplicity and its small learning curve.

Beside these two inherited features from the LearnBot project, we have also

included the possibility of executing the created code in the RoboComp simulator

RCIS [16]. Using the HAL class, this additional feature can be included with little

effort. Moreover, the same principles used to add this extension can be applied for

adapting the tool to any other robotic platform. This constitutes a significant feature of

our tool that marks the different with regards to other educational programming tools.

26

Chapter 5

Implementation and development

This chapter is organized in three sections that deals with the robot development,

the communication between the robot and the user PC and the programming tool

development.

5.1. The robot

Regarding the robot, many changes have been made to the original LearnBot robot

due to the different requirements of the new robotic platform. These changes are

described in the following subsections according to 3 issues: hardware, software and

design The final can be seen in figure 5.1.

Figure 5.1: The EBO robot.

27

5.1. THE ROBOT

5.1.1. Hardware

The new features of the robot make necessary to include the following changes in

the hardware components:

Replace the USB camera with a raspberry camera.

Replace the ultrasonic sensors with laser sensors.

Add a screen to show images.

Add 1 degree of freedom to the camera to vertically cover a wide field of view.

Beside these changes of sensors and actuators, the Odroid-C1 hardware platform

used in LearnBot has been replaced with a Raspberry pi 3B +. This decision

was made because Raspberry includes a CSI port (a video output through pins) to

connect a camera, while in Odroid video output can only be obtained through HDMI.

Additionaly, Raspberry has an integrated Wi-Fi module that is not available in Odroid.

With these changes, our robot will have the following hardware components:

Raspberry Pi 3 Model B+: where the host system runs to control the other

hardware components

Camera with CSI connector: to capture visual information.

Servomotor model SG90: it provides movements to place the camera at a certain

vertical angle.

3.5 inch Resistive Screen (PiTFT 3.5”): to show images (e.g. emotions)

5 laser sensors (VL53L0X): to obtain distance information from objects around

the robot.

PWM pin extender (Adafruit 16-Channel PWM): to provide a stable output to

the servomotor and also to configure the 5 lasers.

28

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

2 298:1 DC motors (73 RPM) in differential configuration to move the robot

base.

Motor controller (DRV8835)

Battery (7.4V) responsible for supplying power to the robot.

DC-DC voltage regulator (D24V50F5) to reduce the voltage from 7.4V to 5V.

In addition to these hardware components, it has been decided to design a shield

(figure 5.2) to connect all these components, reducing significantly the number of

wires.

Figure 5.2: Shield that connects the components to the Raspberry.

Figure 5.3 shows a scheme of the connections between the different components

of the robot. In this figure, it can be observed that the Raspberry is connected to the

camera though the CSI port and to the shield through a 40-pin GPIO header. The

shield provides connection to the screen, the DC regulator, the motors of the base and

their driver, the power connector, the fan, the battery, the switch and a PWM extender.

Finally the PWM extender connects the lasers and the camera servomotor.

29

5.1. THE ROBOT

Figure 5.3: Connection diagram of the EBO hardware.

5.1.2. Software

The different changes performed in the control software are motivated by the

applied hardware changes. Next, these changes are detailed:

Creation of a camera streamer. This change consists of adapting the existing

streamer to the new camera. To improve the fps rate, we decided to create a

mosquitto broker [17] and publish the data under a topic. Thus, clients have to

subscribe to this topic to obtain the images. Using this protocol, a frame rate of

20 fps is obtained.

Creation of a component that offers the lasers information. Since ultrasonic

sensors have been replaced with laser sensors, a new component was created

30

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

to provide information of the distance to obstacles around the robot. This

component firstly assigns an I2C address to each laser by switching off and

then on each laser through a PWM of the PWM extender. After assigning each

I2C address, the information of the lasers is read and transmitted under request

through an ICE interface.

Creation of a component to show images on the screen. This change is due to

the inclusion of a screen in the new robot. The component has an ICE interface

through which it receives the path of a file or the information of an image to be

displayed on the screen. This image is sent to the framebuffer of the screen so

that it is displayed in it.

Creation of a component to move the servomotor of the camera. This new

component is used to control the servomotor that moves the camera. The

servomotor is connected to a PWM pin of the PWM extender. When this

component receives an angle through an ICE interface, it is responsible for

sending the signal to the PWM. This signal is finally received by the servomotor

to move the camera.

Beside these changes, a new component was created to generate emotional

expressions and send the generated images to the screen component. This component

has an interface with 7 methods, one for each emotion that the robot can express:

void expressJoy()

void expressSadness()

void expressSurprise()

void expressFear()

void expressAnger()

void expressDisgust()

31

5.1. THE ROBOT

void expressNeutral()

When one of these functions is called, this component is responsible for making

a smooth transition from the current emotion to the new emotion. To make these

transitions, each emotion has been parameterized with different points and radii.

1 center and 2 radii to define the bounding box of each eye.

1 center and 1 radius to define the bounding box of the pupil of each eye.

4 points for each eyebrow, 2 for the ends, 1 for the upper midpoint and another

one for the lower midpoint.

6 points for the mouth, 3 for the upper lip and 3 for the lower one.

4 points for the tongue, 2 for the ends and 2 for the tip of the tongue.

Summarizing, the control software of the robot is composed of the following

components and scripts:

DifferentialBase: the same component employed in the robot LearnBot.

Laser.

JointMotor: control of the camera servomotor.

Display: screen.

Emotionalmotor: generation of emotional expressions

Camera.

Together with this control software, two additional components are executed in

the robot. These two components provide perceptual high-level information related to

recognition of facial expressions and detection of artificial marks:

EmotionRecognition: recognizes the 5 basic emotions. This component receives

an image, detects faces in it and identifies an emotion for each detected face.

32

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

AprilTag: recognizes AprilTag markers. This component receives an image,

detects AprilTag markers and returns information about the position of each

detected marker and its identifier.

5.1.3. Design

To deal with the new requirements, many parts of the robot were redesigned.

The final robot is composed of the following parts:

Base: upon it, the other parts are placed.

Figure 5.4: Base of the robot

Camera housing (2 pieces): the camera is inside it.

Figure 5.5: Housing of the camera

Support for the Raspberry: the Raspberry and the shield with all its components

are placed upon it. It also ensures that the motors of the wheels are attached to

the base.

33

5.1. THE ROBOT

Figure 5.6: Raspberry support

Frontal shell: it contains the screen, the 5 lasers, the servomotor, the camera and

the PWM pin extender.

Figure 5.7: Frontal shell

Rear shell: it contains the charging connector. It also includes 5 ventilation slots

to prevent the Raspberry from overheating.

34

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Figure 5.8: Rear shell

5.2. Communication between EBO and the PC

This section details the different steps followed, as well as the modifications made

to the client class of the LearnBot project, for the implementation of communications

between the EBO robot and the end user’s computer.

In the LearnBot project, the user PC is connected to the robot through a Wi-Fi

access point provided by the robot. We decided to maintain this way of connection

since a program only models the behavior of one robot.

Once the connection between the robot and the PC has been established, the

communication with sensors and actuators is carried out using an intermediary class

written in Python, as was discussed in section 4.2.3. This class is connected to the

different components deployed in the robot through different proxies associated to each

component.

The intermediary class had to be modified to contemplate the different new

components that were added to the robot (display, jointmotor, emotionalMotor).

These modifications entail connecting to the proxies of the new components and

implementing new methods to send or receive data from these components. After

including all the changes, the new intermediary class presents the structure shown in

35

5.3. THE PROGRAMMING TOOL

listing 5.1.
By means of this intermediary class, the user can write a Python program that

controls the EBO robot. Nevertheless, writing this program would be too complex for

the educational levels to which the project is destined. For this reason, we decided to

implement high-level functions that make data processing easier to the users.

These functions are defined according to the following rules:

Each function is implemented in a separated file.

The name of the file must be the same as the name of the function.

The function must receive at least one parameter corresponding to an instance of

the intermediary class.

Code 5.2 shows an example of function implementation. This function checks if

the distance measured by 3 laser sensors, located in front of the robot, exceeds or not

a threshold.

All these functions are available for use in a dictionary. A call to the implemented

function of the example in listing 5.2 is done as follows:

functions.get(”front obstacle”)(lbot, 200)

Once, this dictionary of functions is available, more complex programs can be

created in a more abstract way. To ease programming even more, the programmer

does not need to program the robot in Python, but using a visual language through

the programming IDE developed as part of our project. Next section describes the

implementation of this tool.

5.3. The Programming Tool

The new programming IDE, called LearnBlock, has been designed to integrate all

the necessary tools to program and control the robot

As previously mentioned in section 4.2, using this IDE, the robot can be

programmed from three types of programming languages:

36

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Listing 5.1: Client class that interconnects the robot to a PC
class Client(Ice.Application, threading.Thread):

def run(self):

...

def lookingLabel(self, id):

...

def stop(self):

...

def stopped(self):

...

def getImageStream(self,image):

...

def readSonars(self):

...

def getSonars(self):

...

def getImage(self):

...

def getPose(self):

...

def setAngleJointMotor(self, angle):

...

def setRobotSpeed(self, vAdvance=0, vRotation=0):

...

def expressJoy(self):

...

def expressSadness(self):

...

def expressSurprise(self):

...

def expressFear(self):

...

def expressAnger(self):

...

def expressDisgust(self):

...

def expressNeutral(self):

...

def setJointAngle(self, angle):

...

def getCurrentEmotion(self):

...

def getEmotions(self):

...

37

5.3. THE PROGRAMMING TOOL

Listing 5.2: Example implementation of a function. (Front obstacle.py)
def front_obstacle(lbot, threshold= 200, verbose=False):

sonarsValue = lbot.getSonars()[1:4]

if min(sonarsValue) < threshold:

if verbose:

print(’Obstacle in front of LearnBot’)

return True

if verbose:

print(’No obstacle in front of LearnBot’)

return False

Industrial language (Python).

Domain specific language (EBOCode).

Visual language.

5.3.1. Industrial programming language (Python)

LearnBlock includes a text editor (figure 5.9), where Python programs can be

created. The user can create the code to control the robot using the intermediary class

that gives access to its low-level components. In addition, all the available high-level

functions can be included in the code to program complex robot behaviors with few

lines of code.

5.3.2. Domain specific language (EBOCode)

Together with the text editor for Python programming, the tool includes a text editor

window for programming the robot by means of s domain specific language1(DSL).

The DSL was defined as a middle language between Python and visual

programming languages. This new language can be understood as a textual

representation of the visual language. To create our DSL, called EBOCode, different

1A domain specific language is a programming language or specification defined for solving a
particular problem, representing a specific problem domain and providing a technique to solve a
particular situation.

38

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Figure 5.9: Integrated text editor for programming in Python. Example of a Python
code that makes the robot to follow a red line.

symbols and rules were defined. The following three types of sentence constitute an

example of our language syntax:

If-elif-else:

if condition:

...

[elif codition:

...

]*

[else:

...

]

end

39

5.3. THE PROGRAMMING TOOL

While:

while condition:

...

end

Robot functions:

function.<function name>(lbot,[arguments]*)

Beside these basic grammar rules, two programming models are considered in our

language:

Sequential programming: the code is include inside a main section. There is

only one running thread, the one associated to this main section. Figure 5.10

shows an example of this programming type.

Figure 5.10: Implementation of the “follow red line” behavior using EBOCode with
sequential programming.

Event-driven programming: using this programming model a program is

composed of different blocks of code associated to certain events. Each event

40

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

is defined using a sentence type called “when”. The code inside this sentence

is executed whenever the defined condition is satisfied. A condition can be

achieved by an external event or by an internal activation (explicit activation

during the execution of a block of code). Every block of code associated to a

“when” sentence whose condition is satisfied runs in a separated thread. Beside

external events, an event called start exists. This event is used to execute a

block of code when the execution starts. Figure 5.11 shows an example of this

programming type.

Figure 5.11: Implementation of the “follow red line” behavior using EBOCode with
event-driven programming.

Once a program using EBOCode is created, the tool Learnbock translates it to

Python language and generates a final program ready to be executed.

5.3.3. Visual programming language

The most complex part of the development of our programming tool is related to

the visual programming language, since it requires a higher level of abstraction for the

final user.

41

5.3. THE PROGRAMMING TOOL

(a) Block1 (b) Block2 (c) Block3 (d) Block4

(e) Block5 (f) Block6 (g) Block8 (h) Block9

Figure 5.12: Shapes of the different available blocks.

The following steps were carried out to include the visual programming option in

our tool:

Definition of the different blocks (shapes).

Definition of the different types of blocks (functions, operations, control, etc.)

Connection between blocks.

Translation from visual language to EBOCode.

To define the block shapes, we decided to create images with the shapes of the

different blocks. These are shown in figure 5.12.

To define the different blocks that will be available to the user, a configuration file

is used. This file contains the attributes of each block in JSON format. The listing 5.3

shows a configuration example of a block.
From this configuration, 2 blocks are created with the shapes of 5.12d and 5.12c

that correspond to the final blocks of figures 5.13b and 5.13a.

Once all the blocks are configured, they appear on the left side of the tool (figure

5.14), organized according to the the field type in different tabs.

To create a program, users have to place and connect the blocks in the central panel.

Once the user clicks over a block of the left tabs, it appears in the central panel. Then,

the user can move the block to any position of this panel.

42

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Listing 5.3: Example configuration of the front obstacle block
[

{

"type" : "perceptual",

"name" : "front_obstacle",

"variables" : [

{

"type": "float",

"name": "threshold",

"default": "200",

"translate": {"ES": "umbral", "EN": "threshold"}

}

],

"img" : ["block4", "block3"],

"languages" : {"ES": "hay_obstaculo_delante",

"EN": "front_obstacle"},

"tooltip" : {"ES": "Devuelve verdadero si la distancia de los

láseres frontales es menor que el umbral",

"EN" : "Returns true if the distance of the front

lasers is less than the threshold" }

}

]

43

5.3. THE PROGRAMMING TOOL

(a) Block generated from block3.

(b) Block generated from block5.

Figure 5.13: Two different types of blocks for the same function.

Figure 5.14: Interface of the programming tool for visual programming. Blocks are
shown on the left, organized according to the type property of the configuration file.

Types of connectors of each block limits the connections among blocks with the

main objective of reducing potential syntactic errors. According to their position in the

block, connectors are classified as follows:

TOP: located at the upper side of the block.

BOTTOM: located at the lower side of the block.

BOTTOMIN: located inside the block.

RIGHT: located at the right side of the block.

44

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Figure 5.15: Implementation of the “follow red line” behavior using sequential visual
programming.

LEFT: located at the left side of the block.

Using these types of connectors, connections between blocks are restricted to:

TOP⇐⇒BOTTOM

TOP⇐⇒BOTTOMIN

RIGHT ⇐⇒LEFT

As in the EBOCode language, the two programming models, sequential and

event-driven, are available in the visual programming mode of the tool. Figures 5.15

and 5.16 show examples of the two programming models using blocks.

When the user build a program with the visual language, this code is translated to

EBOCode and then, translated again from EBOCode to Python. The generated Python

45

5.4. THE SIMULATOR

Figure 5.16: Implementation of the “follow red line” behavior using event-driven
visual programming.

program is finally executed to make the robot behaves as specified by the initial visual

code.

5.4. The simulator

At this point, the programming tool includes all the necessary elements to

program the physical robot using one of the three available programming languages.

Nevertheless, some adaptations are necessary to run the generated code in a simulated

robot.

As previously mentioned in chapter 4, simulation support is obtained form RCIS,

the RoboComp robotic simulator. This is the same simulator that was used in the

LearnBot project.

To use RCIS in our project, a 3D model of EBO was created, as well as different

simulated environments for the robot. Figures 5.17 and 5.18 show two examples of

46

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Figure 5.17: Simulated environment where the robot is in a limited surface with lines.

these simulated environments.

The simulated robot offers the same interfaces to access most of the low-level

components than the physical robot. However, certain changes are required

for communicating with some components. These changes only concern the

implementation of certain functions of the intermediary class. This way no

modification is required neither in the structure of this class nor in any other part of

the programming tool. This implies that a code created by a user using our tool can

be executed in both, the physical and the simulated robot, by exclusively including

the intermediary class implemented for the specific robot. Next section details this

important feature of our project.

47

5.5. EXECUTION OF THE USER CODE

Figure 5.18: Simulated environment of a labyrinth.

5.5. Execution of the user code

When the user creates a code using the visual programming mode, this code is

translated to EBOCode and, finally, to Python code. This code can be executed

in the physical robot or in the simulated one using the corresponding intermediary

class. Each intermediary class is in charge of communicating with the specific robot

accessing to its low-level components.

Figure 5.19 shows a diagram of connections between the tool, the physical robot

and the simulated robot. In this figure, the execution process of the code generated by

the user can be observed. In addition, this scheme reflects how the tool can be easily

extended to be used for other robots. Thus, the extension of our tool to other robotic

platform only entails the adaptation of the intermediary class exposed in listing 5.1,

maintaining the names of the different functions. With this simple step, the whole tool

will work with the robot to which it has been adapted.

48

CHAPTER 5. IMPLEMENTATION AND DEVELOPMENT

Figure 5.19: Diagram of connections between the tool, the physical robot and the
simulated robot.

49

5.5. EXECUTION OF THE USER CODE

50

Chapter 6

Results

To obtain validation results of our project and verify that it meets all the proposed

expectations, different workshops were organized. These activities provide us with

feedback about the different features of both, the robot and the programming tool.

Two types of workshops were performed:

Short workshops: workshops with a duration of about 15/20 minutes where some

programming examples were exhibited. In this kind of activity the interaction

between the child and the tools was limited.

Programming introduction workshops: workshops with a duration of about 2/3

hours, where a group of children had to use the programming tool, autonomously

solving different exercises and testing them in the simulator or in the robot.

In both types of workshops, child opinions were collected with a survey of 7

questions. The next two sections present the result of this survey for each type of

activity.

6.1. Short workshops

Several short workshops were organized as part of the ”European Researchers’

Night” during the 2018 edition. Due to the short duration of each workshop,

51

6.1. SHORT WORKSHOPS

the activity consisted in explaining different features of the project through several

programming examples.

66 children participated in these workshops. The ages of these children ranged

between 5 and 13 (figure 6.1), although 75% of them were from 7 to 9 years old,

which are appropriate ages for our project.

Figure 6.1: Ages of the children who participated in the short workshops.

Regarding the gender of the participants (figure 6.2), 63.6% were boys and 36.4%

were girls. Figure 6.3 shows the gender distribution by ages.

Figure 6.2: Gender of the participants of the short workshops.

The remaining questions of the survey were designed to obtain an evaluation of

different features of our project. To quantify the responses to these questions, a

52

CHAPTER 6. RESULTS

Figure 6.3: Gender distribution by age of the children who participated in the short
workshops.

scale from 1 to 10 was used, where 1 represents the most negative opinion of the

corresponding feature and 10 the most positive one.

Next, the different questions are presented and analyzed.

What do you think about the appearance of the robot?

Results of this question are shown in figure 6.4. As can be observed in this figure,

all the children quantified the appearance of the robot with a value of 5 or above. 89.3%

of the children graded the robot appearance with a value higher than 7. According

to these results, we can conclude that the appearance of the robot is appropriated to

achieve acceptance by children, although new improvements can be made.

The next question of the survey was:

Do you think the robot correctly expresses the different emotions? (joy, sadness,

surprise, ...)

Figure 6.5 shows the evaluation of this feature of our robot. From these results, it

can be stated that the representation of some emotional expressions of the robot should

be redesigned to get a greater approval. It should be noted that the current version of

53

6.1. SHORT WORKSHOPS

Figure 6.4: Evaluation of the appearance of the robot by the participants of the short
workshops.

the robot includes new emotional expressions that where not available at the time of

these workshops.

Figure 6.5: Evaluation of the representation of emotions in our robot by the participants
of the short workshops.

The next question was related to the programming tool:

What is your opinion about the tool to program the robot (suitable interface,

programming using blocks and connections among blocks, etc.)?)

Children opinion regarding this question is shown in figure 6.6. Only 64 children

answered to this question. The main reason is that some children did not pay attention

to the explanations about how to program the robot and they decided to not introduce

false responses. As can be observed in figure 6.6, the majority of the participants

54

CHAPTER 6. RESULTS

expressed a very positive opinion about the programming tool. This means that our

programming tool meets all the requirements to be an appealing programming tool for

children.

Figure 6.6: Evaluation of general features of the programming tool by the participants
of the short workshops.

The next question is also related to the programming tool, but in this case the

question is whether the tool is easy to use or not:

What is your opinion about the easiness of use of the programming tool?)

64 answers were obtained. As shown in figure 6.7, 65.7% of the participants

evaluated the tool for programming with a value higher than 7, although 15.7% of

the children believed that the programming utilities of the tool were rather complex.

This result is in accordance with our expectations, since the duration of this kind of

workshop is insufficient to appropriately introduce the tool for programming.

The last question and the most generic is:

Would you like to have a robot like EBO and learn to program it?

The results of this question are shown in figure 6.8. From these results, it can

be stated that the project had a great acceptance by the children. Thus, 90.9% of the

children evaluated the project with a value of 10, which shows that a great majority of

the children were very interested in using our robot and programming tool beyond this

activity.

55

6.2. PROGRAMMING INTRODUCTION WORKSHOPS

Figure 6.7: Opinion about the complexity of the tool for programming (short
workshops).

Figure 6.8: Evaluation about the interest of the whole project by the participants of the
short workshops.

6.2. Programming introduction workshops

In this kind of workshop, children received a brief introduction on how to use the

tool for programming the robot. Then, they implemented some examples of simple

robot behaviors. The duration of this activity was between 2 and 3 hours. The total

number of participants was 18.

We used the same survey as in the short workshops to collect the opinion of

the children about our project. Although there were fewer participants than in the

previous type of workshop, the results of these surveys have a greater relevance, since

the children had a greater interaction with the robot, the programming tool and the

simulator.

The profile (age and gender) of the children who participated in this kind of activity

56

CHAPTER 6. RESULTS

is shown in figures 6.9, 6.10 and 6.11. As shown in these figures, the mean age of the

participants is in line with the age for which the project is designed. Regarding the

gender of the participants, the proportion of girls over the total of children was similar

to the one observed in the short workshops, with the distribution by age of figure 6.11.

Figure 6.9: Ages of the children who participated in the programming introduction
workshops.

Figure 6.10: Gender of the participants of the programming introduction workshops.

The evaluation of the different features of our project by the participants of

programming introduction workshops is depicted in figures from 6.12 to 6.16.

In relation to the robot appearance (figure 6.12), it is evaluated with a very positive

opinion by a significant percentage of the participants. In addition, the great majority

of the children consider that the emotions of the robot are correctly expressed (figure

57

6.2. PROGRAMMING INTRODUCTION WORKSHOPS

Figure 6.11: Gender distribution by age of the children who participated in the
programming introduction workshops.

6.13). According to this result and the evaluation obtained to the same feature by the

participants of the short workshops, we decided to keep the representation of every

emotion, but we included a smooth transition between expressions when the robot

changes its emotional state, to improve its expressiveness.

Figure 6.12: Evaluation of the appearance of the robot by the participants of the
programming introduction workshops.

With regard to the programming tool, the rating of its general features (figure 6.14)

is comparable to the evaluation of the participants of the short workshops. However,

the children opinion about the complexity of the tool for programming is much more

positive (figure 6.15). This indicates that, once the child has interacted with the tool,

58

CHAPTER 6. RESULTS

Figure 6.13: Evaluation of the representation of emotions in our robot by the
participants of programming introduction workshops.

the complexity of programming the robot using the visual mode is moderate.

Figure 6.14: Evaluation of general features of the programming tool by the participants
of the programming introduction workshops.

Finally, the overall evaluation of the project is shown in figure 6.16. As can be

seen, 100% of the children have a great interest in continuing using the project to learn

programming.

6.3. Comparison with other robotic educational

projects

To finish this chapter, a comparison of our project with the educational projects

presented in chapter 3 is included. With this purpose, the comparative tables of chapter

59

6.3. COMPARISON WITH OTHER ROBOTIC EDUCATIONAL PROJECTS

Figure 6.15: Opinion about the complexity of the tool for programming (programming
introduction workshops).

Figure 6.16: Evaluation about the interest of the whole project by the participants of
the programming introduction workshops.

3 have been replicated, adding a new column to represent the features of EBO and

LearnBlock.

Tables 6.1 and 6.2 present a comparative list of hardware components of the

different educational robots, including EBO.

Table 6.3 shows a comparison of functionalities between EBO and the other studied

robots. As previously mentioned, EBO is not designed to be a building kit, thus this is

the unique feature that is not satisfied.

Table 6.4 shows that EBO meets many of the selected features. Discarding the

Vector robot, since it can not be programmed with a visual language, EBO is the robot

that satisfies the majority of the features. Moreover, 3 of the 4 characteristics that are

not meet, can be satisfied in the near future, because the required hardware components

60

CHAPTER 6. RESULTS

Table 6.1: Table with a list of hardware components of WeDo 2.0, EV3, Mbot, Zowi,
Colby and EBO

WeDo 2.0 EV3 Mbot Zowi Colby EBO

Processor ?
ARM9

300MHz
ATmega

2560
ATmega

328

ARM
Cortex-A53

1.4GHz
Cores ? 1 4

Prize 173e 438,99e 121.75e 79,90e 59,99$
500e

(per unit)
Microphone V V
Distance
sensor Ultrasound Ultrasound Ultrasound

5 laser
(Max 2m)

Touch
sensor

All Screen
(Capacitive)

Cliff
sensor

*Can use
Ultrasound

IMU V V
Screen
resolution 178×128 Matrix Led

LED Matrix
(5 x 6 px) 480x320

Screen
Colors Gray Full color

Screen
Size 3.5”

Camera
resolution 1080p30

Battery
duration ? 3h 2-3h 8 h ? 3-5h

Lights 1 1 V
Motors Normal Normal Normal Normal Normal Normal

Speaker
*Speaker
or Buzzer

Buzzer V V
*Speaker
or Buzzer

IR Reciver/
Trasmiting V

Line sensor V
Parts 280 541 +-50 +-30 ? 63

Connections
Bluetooth/

Wifi

USB/
Wifi/

Bluetooth

Bluetooth/
Wifi Bluetooth Wifi

Color sensor V V
Termometer

61

6.3. COMPARISON WITH OTHER ROBOTIC EDUCATIONAL PROJECTS

Table 6.2: Table with a list of hardware components of Joy robot, Thymio, Codey
rocky, Cozmo, Vector and EBO

Joy robot Thymio Codey
rocky Cozmo Vector EBO

Processor
ATmega

2560 ? ESP32
ARM

Cortex 4
100 MHz

Qualcomm
Snapdragon

1.2GHz

ARM
Cortex-A53

1.4GHz
Cores ? 1 4 4

Prize ? 109.90e 99$ 180$ 250$
500e

(per unit)
Microphone 1 V 4
Distance
sensor 9 InfraRed 1

1 laser
(Max 1m)

5 laser
(Max 2m)

Touch
sensor *Smartphone

5
capacitive

buttons

On the top
of the robot,
(Capacitive)

All Screen
(Capacitive)

Cliff
sensor

* the same
as the

distance.
V V

IMU V V V V
Screen
resolution

LED Matrix
(16 x 16 px)

LED
matrix 128x64 184x96 480x320

Screen
Colors Red Blue Blue Full color Full color

Screen
Size *Smartphone 1.8” 1.8” 3.5”

Camera
resolution *Smartphone 320x240 720p 1080p30

Battery
duration ? 3-5 h 2h 45-60min 45-60min 3-5h

Lights 39LEDS V 4 5
Motors Normal Normal Normal Normal Noiseless Normal
Speaker V V V V
Buzzer
IR Reciver/
Trasmiting 1 V

Line sensor
Parts +-130 ? ? 700 370 63

Connections Bluetooth Wifi
Wi-Fi/

Bluetooth/
USB

Wifi Wifi Wifi

Color sensor V
Termometer 1

62

CHAPTER 6. RESULTS

are already available.

Finally, table 6.5 shows that LearnBlock meets all the selected features, excepting

three of them. The first feature that is not provided by LearnBlock is “Functions

created with blocks can return”. The reason is that we initially considered that it would

not be necessary because returning functions can be implemented from code using the

tool itself. Nevertheless, this feature will be included in the next version of LearnBlock.

The second feature that is not satisfied in our programming tool is “Can be used

from a web browser”, since LearnBlock requires a connection with the physical or the

simulated robot for program execution. Scratch and Blockly are more general tools,

not specifically developed for programming robots. Thus, the use of these tools from

a web browser makes them more accessible for general educational projects related to

programming. Finally, the last unsatisfied feature, “Has a community of shared code”,

is not applicable to our project since its availability is too recent.

Regarding the other features, LearnBlock can extend its blocks creating new blocks

from code using the tool itself. In addition, functions created with blocks can be

grouped forming a library-like set of new blocks that can be imported into any project.

Last and most importantly, LearnBlock communicates with the robot through a special

software class that acts as a hardware abstraction layer. This implies that any robotic

platform can be programmed using our tool by simply replacing the EBO HAL with a

specific software layer that gives access to the hardware components of the new robot.

No additional change is required. Thus, any high-level function already implemented

can be used in new projects independently of the robot being used.

63

6.3. COMPARISON WITH OTHER ROBOTIC EDUCATIONAL PROJECTS

Table 6.3: General features of the analyzed projects and EBO

WeDo 2.0 EV3 Mbot Zowi Colby
Building kit X X X
Visual programming tool X X X X
Integration of general
elements of programming
languages

X X X X

Simulator support
Open-source project X
Open-hardware project X

Joy robot Thymio Codey
rocky Cozmo Vector EBO

Building kit
Visual programming tool X X X X X
Integration of general
elements of programming
languages

X X X X X

Simulator support X
Open-source project X X X X
Open-hardware project X X X

64

CHAPTER 6. RESULTS

Table 6.4: General functionalities of the analyzed projects and EBO

WeDo 2.0 EV3 Mbot Zowi Colby
Follow black line X X X
Follow color line
Emotional expressions X X
Emotion recognition
Tag recognition
Obstacle detection X X X X
Base motion X X X X X
Face detection
Touch detection X
Slant detection X X
Sound detection X
Sound making X X X X

Joy robot Thymio Codey
rocky Cozmo Vector EBO

Follow black line X X X X
Follow color line X
Emotional expressions X X X X X
Emotion recognition X X
Tag recognition X X X
Obstacle detection X X X X
Base motion X X X X X X
Face detection X X X
Touch detection X X
Slant detection X X X X
Sound detection X X X
Sound making X X X X

65

6.3. COMPARISON WITH OTHER ROBOTIC EDUCATIONAL PROJECTS

Table 6.5: General features of the analyzed programming tools and LearnBlock

Scratch Blockly LearnBlock
Create functions with blocks. X X X
Functions created with blocks can
return a value X

Functions created with blocks can be
exported to used in other programs X

Create blocks from code X X X
Facilitates the creation of blocks
from code X

Multilingual options X X X
Can be used from web navigator X X
Can be downloaded in the PC X X X
Has a community of shared code X
Consistency of variables X X X
Can adapted to other robots X X X
High-level functions already implemented
can be used in adapted projects X

Includes a hardware abstraction layer X
The tool directly translates from block
code to other programming languages X X

66

Chapter 7

Conclusions and future works

This chapter exposes the main conclusions of our work. Beside these conclusions,

improvement proposals are also described for both, the EBO robot and the

programming tool LearnBlock.

Starting with EBO, it meets all the objectives that were considered at the beginning

of the project and, in addition, it has had a great acceptance by the children. In

general, according to its features and components, EBO is comparable to many other

educational robots, although it can be improved in several ways:

Add audio hardware so that the robot can play sounds or even talk with the help

of a text-to-speech converter.

Add accelerometer and oscilloscope to control odometry and detect sudden

movements.

Take advantage of the touch screen to extend the human-robot interaction

possibilities.

Include a laser sensor under the base of the robot to detect edges of tables or

steps.

Reduce production costs

Reduce the computational load

67

Add interaction with other robots, to extend the project to collaborative robotics.

Regarding the programming tool, LearnBlock also meets all the objectives outlined

during the design phase of the project. Additionally, LearnBlock includes interesting

features that are not provided by any other educational programming tool. Specifically,

LearnBlock can be used with any robot with little programming effort. This makes it a

very useful tool. Nevertheless, new extensions can be added to improve even more our

tool:

Include new functions that provide additional functionality related to the new

hardware components of the robot.

Add more restrictions to the connections of the blocks to eliminate potential

syntactic errors.

Add collaborative robotics extensions, so that different clients that control the

robots can communicate with each other and know what the others robots are

doing.

Add options for automatic updates, when a new version of the programming tool

is available.

Considering the project as a whole, it can be stated that the aim of creating a new

educational tool to work up different skills in children has been largely achieved. There

are few educational tools as complete as ours. Moreover, new improvements will lead

to a very competitive tool. “Imagination is the only limit” (Charles Kettering).

68

Annexes

69

Appendix A

Installation

The requisites to install our tool in a computer are the following:

Linux Operative System.

Version 18.04 or higher.

Once these requirements are met, the following steps should be performed:

1. Install the Robocomp framework. The steps to install this framework are

described in the following link: https://github.com/robocomp/robocomp

2. Install Python. To install Python, the following versions can be chosen: 2.7.* or

higher, 3.5.* or higher, lower than 4. As an example, to install Python 3.7 with

the apt command, the following line has to be executed:

sudo apt install python3.7

3. Install pip. The version of pip has to be the same than the one chosen for Python:

sudo apt install python3-pip

4. Install LearnBlock. It can be installed from the repository https://pypi.org/

project/learnbot-dsl/. Depending on the installed Python version, pip or

pip3 must be used: Python-2.*

71

sudo pip2 install learnbot-dsl

Python-3.*

sudo pip3 install learnbot-dsl

Once the installation process is finished, the LearnBlock tool is already available

for execution.

All the additional information of the project can be found in the LearnBot github

repository:

https://github.com/robocomp/learnbot/

72

Bibliography

[1] Piaget - desarrollo cognitivo del niño. https://

desarrollocognitivoinfantil.blogspot.com/2016/04/

piaget-desarrollo-cognitivo-del-nino.html Accedido a 06-01-2019.

[2] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk,

Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,

Brian Silverman, et al. Scratch: programming for all. Communications of the

ACM, 52(11):60–67, 2009.

[3] Lego Education. Wedo 2.0, 2017.

[4] Liberios Vokorokos, Juraj Mihalov, and Eva Chovancová. Potential of lego c© ev3

mobile robots. Acta Electrotechnica et Informatica, 15(2):31–34, 2015.

[5] Makeblock-mbot. https://makeblock.es/productos/robot_educativo_

mbot/ Accedido a 06-01-2019.

[6] Bq-zowi. urlhttps://www.bq.com/es/zowi Accedido a 06-01-2019.

[7] Learnigresources-colby. https://www.learningresources.com/

product/learning+essentials--8482-+stem+robot+mouse+coding+

activity+set.do?sortby=ourPicks&refType=&from=Search&ecList=6&

ecCategory= Accedido a 06-01-2019.

[8] Makeblock-codey roky. https://www.makeblock.com/steam-kits/

codey-rocky Accedido a 06-01-2019.

73

[9] Joy robot (robô da alegria). https://www.instructables.com/id/

Joy-Robot-Rob\%C3\%B4-Da-Alegria-Open-Source-3D-Printed-A/

Accedido a 06-01-2019.

[10] Fanny Riedo, Morgane Chevalier, Stéphane Magnenat, and Francesco Mondada.

Thymio ii, a robot that grows wiser with children. In 2013 IEEE

workshop on advanced robotics and its social impacts (ARSO), pages 187–193.

Eidgenössische Technische Hochschule Zürich, Autonomous System Lab, 2013.

[11] Scracth. https://scratch.mit.edu/ Accedido a 06-01-2019.

[12] Neil Fraser. Google blockly-a visual programming editor. https://

developers.google.com/blockly/ Accedido a 06-01-2019.

[13] JM Haut, ME Paoletti1 P Bustos, and N Garcıa. Code2bot, a social robot for the

classroom. In Conference of the Spanish Association for Artificial Intelligence,

CAEPIA, volume 15, 2015.

[14] Luis Manso, Pilar Bachiller, Pablo Bustos, Pedro Núnez, Ramón Cintas, and

Luis Calderita. Robocomp: a tool-based robotics framework. In International

Conference on Simulation, Modeling, and Programming for Autonomous Robots.

Springer, 2010.

[15] Michi Henning and Mark Spruiell. Distributed programming with ice. ZeroC

Inc. Revision, 3:97, 2003.

[16] Marco Antonio Gutierrez Giraldo, Adrián Romero Garcés, Pablo Bustos

Garcı́a de Castro, and Jesús Martı́nez Cruz. Progress in robocomp. 2013.

[17] Roger A Light. Mosquitto: server and client implementation of the mqtt protocol.

Journal of Open Source Software, 2(13), 2017.

